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THE STABILITY OF THE STEADY-STATE MOTIONS OF A SYSTEM WITH 
PSEUDOCYCLICAL COORDINATES* 

V.A. ATANASOV and L.K. LILOV 

The sufficient conditions for the asymptotic stability of the steady-state 
motions of a mechanical system with pseudocyclical coordinates, by means 
of forces acting on these coordinates when dissipation with respect to 
the positional coordinates is present, are formulated. Both gyroscopically 
connected and unconnected systems are considered. The results are used to 
study the possible stabilization of the steady-state motion of an 
unbalanced rotor on a flexible shaft. 

1. Consider a holonomic scleronomic mechanical system with II degrees of freedom. Let q, 
be the generalized coordinates of the system, Q,, p; the generalized velocities and momenta 
(j = 1,. . .( n), T and n the kinetic and potential energies respectively, and L = T-n the 
Lagrange function. Let non-potential forces Qj (j = 1, . . ..n) as well as potential forces, 
act on the system. It will be assumed throughout that there are coordinates qa (always, 
a==m+l,..., n;m<n) which do not appear explicitly in the expression for the Lagrange 
function L (aLit3q, = 0). We also assume that the forces acting on the system are likewise 
independent of these coordinates, which we shall call pseudocyclical. The remaining coordinates 
q# (i = 1, . . ., m) are positional. The generalized non-potential forces & (i = 1, . . ., m) will be 
regarded as dissipative with respect to the generalized velocities; the dissipation may be 
incomplete, or, in particular, may be zero. 

When there are no forces Q ar acting on the pseudocyclical coordinates, the system can 
perform a steady-state motion, in which the potential coordinates qi and the pseudocyclical 
velocities qa’ remain constant, while the pseudocyclical coordinates qu vary linearly with 
time. Our main problem is to find the conditions under which the steady-state motion can be 
stabilized up to asymptotic stability with respect to the positional coordinates and all the 
velocities, by means of forces Qa which act only on the pseudocyclical coordinates. 

This problem was first considered in /l, 2/ when studying mechanical systems when there 
is no dissipation. It was proposed in /3/ to choose the forces Q, in such a way that a pre- 
assigned linear manifold proved to be an invariant asymptotically stable integral manifold 
for the system of linearized differential equations of the perturbed motion. If the linearized 
system is then asymptotically stable on the manifold with respect to the positionalcoordinates, 
these forces Q, then solve the problem of the asymptotic stability of the steady-state motion. 
This method of constructing the stabilizing signals was used to study the stability of any 
steady-state motions of gyroscopically unconnected systems /3/ and the trivial steady-state 
motions of gyroscopically connected systems /4/. Different methods may be used to conctruct 
the stabilizing signals, in particular the method given in /5/. 

However, before trying to construct the stabilizing signals, we must ask the fundamental 
questions as to whether a given steady-state motion can in fact be stabilized by forces which 
act on the pseudocyclical coordinates. Below, we state sufficient conditions for this problem 
to be solvable for any systems with pseudocyclical coordinates when there are dissipative 
forces on the positional coordinates. 
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2. We choose the Rouse variables 

4 := (C/l, ., Y”,)T, ‘I* == (yr,c+,, ‘> 42 

q’ = ((II’. Y,‘)‘, p = (pnzc17 . ‘1 P,J 

On substituting into the expression for the kinetic energy 

the dependence 

Y*' = 4C (P - Azlq’) (2.1) 

we obtain 

T =y '/24'7 (A,, - A&,,-‘A&q’ + 1izpT4-‘~ G.2) 

Here, A,, = AnT, A,,= A,sT, A,, = A,zT are submatrices of the positive definite (n X n) 
matrix of the kinetic energy, of dimensions m X m, r X m, r X I’ (r = n-m) respectively. Using 

(2.1) and (2.21, we can write the Rouse function as 

R = R (4, q’, p) = T - n + pTq*’ = R, + R, - I/r’ 

R, = li,q’TAq’, A == A,, - AI,A,,-‘A,I 

RI = pTA,,-‘q’ = gTq’, g = A,,A,;‘p = II g,, . . ., g,llT 
W = ‘izpTA,,-‘p + n (q) 

Study of the motion of the mechanical system amounts to studying the system of equations 

d aft% aRp 
--. dt aqi -- =$ t-&g,,,.*- 2 $Qn+Qi aqi 

CC=m+1 
dpaldt = Qa 

(2.3) 

(gt, = ag,iaq, - agtlaq, = -g,,; i, s = I, . . ., m) 

which, on integration, gives the qa by means of the quadratures 

ya = 5 (aRlap,)dt + c,’ 

When Qa = 0, the first m equations of (2.3) can be regarded as the equations of a 

fictitious mechanical system, whose kinetic and potential energies are the functions R, and 

W respectively, and on which act additionally gyroscopic and dissipative forces. We call 

this the reduced system; it can have equilibrium positions which correspond to the steady- 

state motions of the initial system, when the positional coordinates and the pseudocyclical 

momenta remain constant, while the pseudocyclical coordinates vary linearly with time. The 

possible steady-state motions of the system are given by the conditions 

awiaqi l,,_q-, p=c = 0 (i = I, . . , m) 

while the control must satisfy the equations 

Qa lq+.p=e = 0 

We linearize Eqs.(2.3) in the neighbourhood of the steady-state motion. 

5, p = c + rl, (Qm+lr . . ., QJT = (u,,,+~, . . ., u,Y. we obtain 

Af”+(n--G)c+ CE+N~+h=O, q’=u 

A = A (q”), C = II @W (qo, c)laqtaqS II, G = II gt, (9p, c)ll= --G’ 

h’ = II a2w (f, 4hah IO r = A,, (~%s-’ (n”) 
(i, s= 1, . ., m) 

where D is the (m X m) matrix of dissipative forces Qi (i = 1, . . ., m). 
Let hi be the roots of the equation 

det )I C - XA (( = 0 

(2.4) 

Putting 4 = q"+ 

(2.5) 

(2.6) 
We can always make a change of variables z = Q,E in such a way that‘system (2.5) takes 

the form /6/ 

z" + (Dl - G,)z’ + AZ + IV,? + rlu = 0, q’ = u (2.7) 
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We write system (2.7) in the normal form 

v’= Lv+ Ku, v = (.zT, Z’T, qT)T 

Bere and throughout,El, is the unit (k x k) matrix. The condition 

rank (K, LK, . ., Lzn.+-1K) = 2m + r (2.8) 

for the pair (L,K) to be completely controllable, is obviously sufficient for the asymptotic 
stability of the steady-state motion Q = q’,p = c with respect to the positional coordinates 
and all the velocities. For a linear system (2.5) with no dissipation (D = (9, condition 
(2.8) is necessary, since the characteristic equation detll E- PE~,,,+~II = 0 of the system 
contains only even powers of p due to the relation GT = -_G, and hence, when condition (2.8) 
is violated, the uncontrolled part may not be asymptotically stable. 

If we put 

it can be shown that 

LiK = +(PB + Q) II 0 u (i=l,. . ., 2m+r-1) 

so that (2.8), recalling that r =n - m>i, is equivalent to the condition 

rank S = 2m, S = 11 PB + Q, P (PB + Q), . . ., Pan+1 (PB 

On now using the expression 

t QN1 

l'B+Q=-Rllr,T, N,TIIT, R= 
&I 0 

G - 4 E, I 

and the obvious relation ranks = rank (R-IS), we can reduce (2.8) to the equivalent condition 

rank 11 B1, PIB,, . . ., P~-‘B1 II = 2m (2.9) 

We have thus proved the following theorem. 

Theorem. Complete controllability of the pair (Pl,Bl) is a sufficient condition for 

the asymptotic stability of the steady-state motion of a mechanical system with pseudocyclical 

coordinates with respect to the positional coordinates and all the velocities, by means of 

forces which act only on the pseudocyclical coordinates, when the positional coordinates are 
subject to dissipative forces. 

3. Consider the case of a gyroscopically unconnected system, i.e., Al2 = 0, so that 
Gl = 0, rl = 0. System (2.7) now has the form 

z" + D,z’ + AZ + N,q = 0, q’ = u (3.1) 

By our theorem, the zero solution z = z'= 0, q = 0 can be stabilized up to asymptotic 

stability with respect to z and z' is the pair (pl,B,), where 

is completely controllable. 
Consider the corresponding system of differential equations 
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in which we make the change of i,ariables 

System (3.2) clearly transforms into a system which is precisely the first matrixequation 

of system (3.1), written in the normal form, if we put r, = IO in it. We thus arrive at the 

following corollary. 

Corollary. The condition for complete controllability of the system 

Z" + DiZ' $ AZ zy -2VlT) 

in which the perturbations 1) of the cyclical momenta and regarded as the control, is a 

sufficient condition for asymptotic stability of the steady-state motion of a gyroscopically 

unconnected system with respect to the positional coordinates and all the velocities, by means 

of forces which act on the pseudocyclical coordinates when the positional coordinates are 

subject to dissipative forces. 

There are no control terms in (3.1) in the case of the trivial steady-state motion when 

Eqs.(Z.S) onthehyperplane q = $ have the form /3/ 

aniaqi = 0, ai1 &*-r ll/&7i = 0 (i = 1, . ., m) 

In this case, N, = 0, whence it follows that any steady-state motion that is unstable 

to a first approximation cannot be stabilized by linear forces which act on the pseudocyclical 

coordinates. If all the roots hi> 0 (i = 1, . . ..m). then, by one of the Kelvin-Chetayev 

theorems, we can always arrange for asymptotic stability of the zero solution by forces of 

total dissipation (D1> 0). Completeness of the dissipation is not, however, a necessary 

condition, and we can arrange for asymptotic stability by suitably chosen forces of partial 

dissipation with a degenerate matrix D, > 0, whose rank is equal to the maximum multiplicity 

of the eigenvalues hi /7, 8,'. In particular, if h, = h, = . . . = h,, the matrix D, is as 
degenerate as possible and its rank is unity. 
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4. As an example, consider the possibility of asymptotic stabiliz- 

ation by the turning moment (see Fig.1) of the rotation of a rotor 

which is clamped eccentrically to a shaft. As in /9/, we shall assume 

that the rotor performs plane-parallel motion, and we introduce the 

coordinate system ozy into the plane of motion; the origin 0 is the 

point of intersection of the plane with the straight line connecting 

the sbaftbearings, 0’0” while the saxisisparalleltothe SegmentPG. where 

G is the centre of mass of the rotor, and P is the point at which it 

is clamped to the shaft. Assuming that the angular velocity of the 

rotor rotation does not exceed a certain value, a turning moment was 

found in /9/ which asymptotically stabilizes the steady-state motion 

of the rotor, in which the rotor rotates with constant angularvelocity, 

while its centre of mass remains fixed in the uniformly rotating osy 
system of coordinates. 

We shall show that this steady-state motion can be asymptotically 

stabilized for all values of the angular velocity except one. 

The kinetic and potential energies of the system are 

where m is the mass and J is the central moment of inertia of the rotor, z and y are the 
coordinates of its centre of mass G in the Ozy system, cp is the angle between the z axis 
and the fixed axis X in the plane of motion of the point G, 1 is the length of segment PG. 
and c is the coefficient of elasticity of the shaft. We assume that the system is acted on 
by the internal resistance force (--a~', --ay'), applied to a point of the shaft (a is the 
coefficient of internal resistance), and by the controlling moment M(r,x’,y,y’,q’), which has 
to be found. 

The matrices in (2.2) are 

The steady-state motions of the system are 
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q = q” = (% Yo) T, p = k, = 00 [J + m (~2 + YO’)~ 

where a0 is the angular velocity of rotor rotation, and are found from system (2.4), which in 

the present problem hastheform 

xzo + cl = 0, xy, = 0; x = c - rnOOl (4.1) 

while the control must satisfy the condition 

M (~0. 0, Y,, 0, %I) = 0 (4.2) 

After this, the problem of choosing the control amounts to finding the feedback coef- 

ficients in the linear part of the dependence of the control moment M on the disturbances of 
the positional coordinates and all the velocities. 

In the present case of an unbalanced rotor (I* 0) t system (4.1) is only meaningful under 

the condition ~~~=#clrn, when zo= --cl/x, y, = 0, while o0 is given by condition (4.2). The matrices 

in Eqs.(2.5) are 

The roots of the secular Eq.(2.6) are 

a, = n/m + 4vmo,?z,2, h, = Xl(VJ) 

When x>O, i.e., under the condition 

eo<v'X (4.3) 

the roots aI, h, are both positive. Under this condition, the control u=kq(k<O) makes the 

manifold q= 0 an asymptotically stable invariant manifold of system (2.5) and thereby 

asymptotically stabilizes the steady-state motion /9/. 

Condition (4.3) is not necessary for asymptotic stabilization. 

For, make the transformation 

Condition (2.9) now reduces to the condition 

(c - moo*) + 4o,*a = 0 (4.4) 

which, with the exception of the case or)= fd(n- 4aj, is always satisfied. 

In short, given any steady-state angular velocity oO, except for the value mentioned, we 

can find a control moment which asymptotically stabilizes the motion. It must be said that 

in this case the internal friction forces of the unstabilized rotor do not have a significant 

influence on the asymptotic stabilization, since condition (4.4) also holds when n = 0. 

Now assume that the rotor is stabilized, i.e., the centre of mass is the same as the 
geometric centre (2 = 0). System (4.1) has the solution o,=I/&, y, = 0, while I,, is found in 

such a way that condition (4.2) holds. If there is no internal friction (a = 0), condition 
(4.4) may not hold, so that the steady-state motion cannot be stabilized asymptotically by 

linear forces, since condition (2.8) becomes necessary in this case. However, the presence 

of internal dissipation forces (a#O) makes it possible for the motion to be asymptotically 

stabilized. 
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PERIODIC MOTIONS OF GYROSCOPIC SYSTEMS* 

A.A. VORONIN and V.V. SAZONOV 

A generalized conservative gyrOSCOPiC system is considered. It is shown 

that there is a two-parameter family of periodic solutions of the complete 
equations of motion of the system, close to the similar family of solutions 

of the precession equations. 

1. Consider a conservative mechanical system which contains 1 gyroscopes. We assume 

that the system position is defined by 2m + 1 generalized coordinates x1,...,+,,, cpl,...,‘pl, 

where ‘pr, . . ..‘p. are the angles of proper rotation of the gyroscopes, while I = (5*. . ., Iz,)T 

are parameters which characterize the directions of the gyroscope axes and the positions of 

the suspensions. We also assume that the system is described by the Lagrange function /l/ 

Here, the dot denotes differentiation with respect to time t, Ck are constants, and the 

symmetric matrix A (z) = (Uij (Z))i,j=1'" is positive definite. The angles rp, are cyclical coor- 

dinates, and the corresponding first integrals are 

Using Rouse's method and introducing the notation 

the equations of motion of the system can be written as 

These equations have the generalized energy integral 
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